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Executive Summary 
This document describes our main product, the Virtual Data Lake (VDL) and the technology 
underlying it. The VDL is a flexible data collaboration platform with which multiple parties 
can collaborate on data (join, query, analyse data sets) without revealing input data to 
each other. Data scientists can interact with the VDL via Python scripts, as if it were a 
normal database. 

The VDL is based on MPC (Multi-Party Computation) technology. We use Shamir secret 
sharing based MPC, providing strong confidentiality and correctness guarantees. The VDL 
takes full advantage of modern server hardware by exploiting parallelism while avoiding 
thread contention. This leads to a runtime performance that is close to linear in the 
number of processor cores.  

Throughout all steps of the computation, the confidentiality of the data is guaranteed; 
neither analysts interacting with the VDL, nor system administrators managing one of the 
VDL servers, have access to the input data or any of the intermediate results. The outcome 
of the analyses can be disclosed to one or more designated parties.  

Although we opted to use logistic regression to provide quantification, in principle any 
machine learning model can be used in the VDL; however, some models, such as very large 
or deep neural networks, will result in excessive runtime performance.  

 

 

 

 

 

 

 

 

 

 

 

 

  



2 
 

1 MPC technology  
Secure multi-party computation (MPC) is a privacy technology that lets multiple parties 
collaborate by enabling computations on their combined data, in such a way that the 
parties' inputs remain mutually secret; only the result of the computation becomes known 
(to one or multiple designated parties). 

MPC has a strong theoretical foundation based on four decades of academic research. As 
such, it immediately sets itself apart from “hardware engineering”-approaches to secure 
computation, such as trusted execution environments (TEEs). 

At some point in the past decade, a turning point was reached for MPC, in that the runtime 
performance of MPC (which was a rightful concern in the past) improved to a point where it 
no longer forms a barrier for most practical use cases. This turning point has been reached 
through technology advances in computing and networking hardware, as well as through 
several theoretical breakthroughs. Several members of Roseman Labs’ team of 
cryptographers have played a role in some of these breakthroughs.  

MPC belongs to a broader class of privacy technologies originating from modern 
cryptography; other technologies within this class are, for example, fully homomorphic 
encryption (FHE) and zero-knowledge proofs (ZKPs). Roseman Labs’ main focus is on MPC, 
because we are convinced that MPC is currently the privacy technology with the best 
overall "scorecard", when taking security, runtime performance, and versatility into 
account. 

Roseman Labs currently applies Shamir secret sharing based, passively secure MPC, 
typically using three computational nodes, which can be deployed on-premise or in the 
Cloud (or as a mixture of the two). Although the number of computational nodes is 
deliberately kept low for cost and runtime performance reasons, the number of clients that 
can connect to the MPC servers (to securely provide input or consume output) is not 
limited by this figure. By leveraging modern container technologies like Docker and 
Kubernetes, we provide a smooth deployment process of our solutions in our clients’ 
environments. 

Roseman Labs’ main product, the Virtual Data Lake, is powered by Cranmera, our 
production-grade MPC engine. Cranmera has been built from the ground up to take full 
advantage of the power of modern server hardware. By exploiting parallelism while 
avoiding thread contention, we achieve speedups linear in the number of processor cores, 
enabling Cranmera to deliver the best-in-class MPC runtime performance. 
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2 The Virtual Data Lake 
The Virtual Data Lake (VDL) enables organisations to break down data silos, by offering the 
possibility to extract insights from virtually combined data sets without the need to reveal 
their sensitive input data to each other. The VDL has several benefits over traditional data 
collaboration: 

• Confidentiality: Input data is never revealed – Sensitive data is encrypted locally at 
each organization. As part of the encryption process, the data is partitioned into 
parts that do not disclose any information. These parts are then sent to the 
different nodes in the virtual data lake. 

• No data sharing: Data is only combined virtually – Due to the nature of MPC (Multi-
Party Computation) the data is only combined virtually as part of the execution of a 
query. Only the outcome of this query is presented to the analysts, and no input 
data is disclosed. 

• Python interface: Data analysts can interact with the VDL as if it was a normal 
database – The VDL is an abstraction layer on top of our Cranmera engine. This 
enables data scientists to interact with the VDL like they would with any other 
database, giving them access to state of the art cryptography without the need for 
any additional training or resources. This interaction is enabled by our Python 
library Crandas (explained in more detail in section 2.2). 

• Strong purpose binding: Types of queries, output and viewers are pre-agreed and 
signed off – A collaboration based on the VDL is governed by a group of data 
owners that agree upon the queries that can be executed, the output that can be 
generated, and the individuals that can access the VDL. This ensures that no data 
can be extracted beyond the scope of the collaboration. In terms of the GDPR, this 
provides strong purpose binding and control. 

2.1 Architecture & deployment scenarios 
As outlined in Section 1, a deployment of the Virtual Data Lake consists of at least three 
nodes. These nodes are based on Docker technology and can be deployed both on-premise 
and in cloud environments. Due to the nature of MPC, segregation of duties (SoD) needs to 
be in place between the administrators of those nodes. This can be achieved in three 
different deployment scenarios: 

• Centralized – All servers deployed in a single organization; segregation of duties 
implemented between administrators within the same organization. 

• Distributed – All servers deployed in logically and legally separated environments. 
Thereby implicitly implementing SoD as the administrators are part of different 
organizations. A distributed deployment can exist of a combination of cloud and 
on-premise hosted servers. 

• SaaS – All servers deployed in a SaaS environment that is managed by Roseman 
Labs; segregation of duties implemented between Roseman Labs administrators 
(and cloud providers). 

A schematic representation of a VDL deployment is outlined in the image and description 
below. 
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• VDL Node — A docker container containing the VDL server application. This container 
requires connectivity with the other VDL nodes and the Crandas library used by the analysts. 
 

• Analyst interface (Crandas) — Explained in more detail in 3.2 
 

• PrometheusDB — Used to collect metrics from the VDL Node and store them in a database.  
 

• Grafana — Used to create monitoring dashboards based on the data collected in the 
PrometheusDB. For example, monitoring resource usage by the VDL node. 
 

2.2 Analyst interface – Crandas 
Analysts interact with the VDL through a Python library called Crandas. This library mimics 
the widely used data science library Pandas and provides a familiar interface to the user.  

Crandas serves as an abstraction layer between the multi-party computation performed by 
the VDL nodes and the analyst. Analysts can develop scripts in Python as if they are working 
with Pandas (or other data science libraries) on locally available data sources. Crandas 
translates these Python operations into commands executed by the VDL nodes. The 
commands are sent to the node that is managed by the analyst's organization, this will 
orchestrate the computation by the different VDL nodes and return the result to the analyst.  

2.3 Features of the VDL  
Features of the VDL are continuously extended. For an up-to-date overview, visit our online 
documentation portal: rosemanlabs.com/rldocs. Current functionalities include a wide 
range of operations for statistics and machine learning purposes.  

2.4 Generic runtime performance description 
The table below lists the generic performance metrics for the main functionalities which 
are available within the VDL. These metrics were obtained in a deployment on a Kubernetes 
(K8s) cluster hosted by DigitalOcean. This cluster consists of three nodes which have 16 
CPUs and 128GB of RAM each (m3-16vcpu-128gb). The resulting key runtime performance 
metrics are: 

  

https://rosemanlabs.com/rldocs
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Logistic regression - training model using 
10 iterations 

Rows Timing (16 cores /node) 

100 2.2s 

1000 9s 

10K 79s 

100K 783s / 13min 

 

Logistic regression - Inference 
probabilistic 

Rows Timing (16 cores /node) 

100 0.2 

1000 2s 

10K 20s 

100k 210s 

 

Logistic regression - Inference binary 

Rows Timing (16 cores /node) 

100 0.2s 

1000 2s 

10K 19s 

100K 199s 

 

 

 

 

 

 

 

 

 

 

Join (two tables containing the number of 
rows listed) 

Rows Timing (16 cores /node) 

100 0.2s 

1000 0.2s 

10K 0.7s 

100K 6.8s 

1M 69s 

 

Filtering (a single table containing the 
number of rows listed) 

Rows Timing (16 cores /node) 

100 0.02s 

1000 0.03 

10K 0.1s 

100K 0.7s 

1M 6.2s 



 
 

3 Threat model, confidentiality and integrity guarantees 
The VDL servers use arithmetic secret sharing based on the BGW (Ben-Or, Goldwasser, 
Widgerson) protocol with Shamir secret sharing. In a set-up with three servers, this is 
secure against at most one passively corrupted party (i.e. an honest-majority assumption). 
This means that no single server knows the data, but a majority of servers could in 
principle learn the data by combining their information. To avoid this scenario in practice, 
we assume that the servers (and their independent administrators) do not collude. This 
may in practice be realized by distributing the server admin rights over three different 
collaborating parties.  

In more detail, every value v in the Virtual Data Lake is stored in a distributed way by 
storing so-called secret-shares v_1, v_2, v_3 at the respective servers. The values v_i have 
the property that any v_i does not reveal any information about v (given a single v_i, all 
values for v are equally likely), but v can be uniquely computed from v_1 and v_2, from v_1 
and v_3, or from v_2 and v_3. 

In the Virtual Data Lake, like in a relational database, data is organized in tables, on which 
various operations can be performed. Computations (e.g., filtering, joining) take one or 
more private input tables and perform a computation that results in a private output table. 
All computations are carried out using 1-out-of-3 passively secure multi-party computation 
(MPC). This means that no single party learns any information about the inputs, outputs, 
and intermediate values of the computation, apart from meta information that is explicitly 
deemed public, such as which operation is performed, the name of the table, the number 
and type of columns, and the number of rows. 

Furthermore, the MPC operations are implemented in such a way that the time it takes to 
complete that operation only depends on public information. This means that an attacker 
cannot learn information on secret data based on timing measurements. 

3.1 Roles  
A VDL deployment involves various roles, which we describe here for the sake of clarity. 

We define the participants to be the organizations participating in the data collaboration. 
An input party is a participant that provides data as input to the computation; a compute 
party is a participant that runs and administers a VDL node (server), and an output party is 
a participant that is eligible to receive computational results. Note that participants could 
fulfil multiple roles simultaneously, e.g. a participant could be an input party as well as a 
compute party. A client is a natural person, affiliated to one of the participants, that runs 
queries to upload data, perform data analyses and/or download results, typically from a 
Python environment. 

3.2 Client authentication and query authorization  
The query-authorization layer ensures that a client can only perform queries that have 
been explicitly authorized by one or more representatives of the participants. The 
authorization mechanism is flexible in that it can authorize specific queries, or authorize 
entire classes of queries via a templating mechanism. The query-authorization layer serves 
as a powerful security control. For example, it will prevent uncontrolled data leakage in a 
'rogue employee'-scenario, in which an employee of one organization tries to steal or 
browse through the entire data set from another organization. 



 

 
 

A representative of the participants is a natural person that is given the authority to 
authorize queries and should only do so if running the particular query would be in the 
interest of the participants, and has a legal basis (e.g. under the GDPR). The representative 
can authorize a query by digitally signing it. Hence, the representative (or group of 
representatives) forms the link between the “human world” (involving interests, legal 
aspects, etc.) and the VDL, which will execute a query if and only if the signature is valid 
(but does not know anything about aspects of the “human world”). 

3.3 System and networking topology  
In the figure below we show an exemplary VDL setup; the items shown in the figure are 
discussed in the text further below. 

 

The core of the VDL system consists of three VDL server nodes. The servers are pairwise 
interconnected via secure channels (TCP/IP connections secured with Transport Layer 
Security v1.3). 
A client connects via the query interface to the VDL, which uses JSON-over-HTTPS. Hence, 
the pairwise server connections as well as the query interface are secure connections 
protecting against malicious outsiders. 

To connect as a client via the query interface, you only need to connect to a single VDL 
server node. This does not imply, however, that this VDL server node can inspect the data 
being communicated over this interface; on the contrary, all uploaded and downloaded 
data is hidden from the individual VDL servers using the VDL input/output module. This 
module masks uploaded and downloaded data such that the servers cannot learn which 
data was uploaded or downloaded. Data uploaded via the input/output module results in 
that data being available in Shamir shared form at the VDL server nodes, to which the 
above-mentioned security measures apply. Downloading data achieves the reverse: Shamir 
secret shared data stored at the VDL server nodes is converted (by means of an MPC 
protocol) to a masked representation that is unmasked only at the client’s end. 

If the client using the query interface is affiliated to a participant, that is also a compute 
party, the client can connect to the query interface via the participant’s Intranet. On the 
other hand, by exposing the query interface to the Internet (with appropriate network 
security controls), other participants that are not themselves a compute party, can connect 
to the VDL via that server node. Recall that the compute party to which these other clients 
(affiliated to other participants) connect will not be able to inspect the data uploaded by 
these clients.  

VDL server node

VDL server node

VDL server node

Pairwise
TCP/IP+TLS 
connections

query interface

Client A

Client B

query interface

Client C



 

 
 

3.4 Data integrity: assumptions and guarantees  
Theoretically, the BGW+Shamir MPC protocol provides correctness, meaning that given 
correct inputs, the computational result(s) will be correct. Note that the input parties could 
always deliberately provide incorrect inputs, which cannot be avoided a priori (a posteriori, 
a party who provided false inputs could be penalized by the other parties). 

The correctness guarantees above are under the assumption that, at each VDL server node, 
the server executable (the application binary) is not tampered with. Likewise, we assume 
that the cache files that the servers store locally on disk are not tampered with. Both 
aspects can be guaranteed in practice using standard server-administration access control 
policies. Furthermore, we need to assume the correctness of the software implementation. 
Our confidence in the implementation-correctness of our software is based on repeated 
and automatic testing, and periodic external code audits (one of which is underway by the 
Dutch National Cyber Security Center of which results will be available in the coming 
months). 

3.5 Conclusions  
The VDL solution offers strong confidentiality guarantees, namely as long as the majority of 
the VDL server nodes is 'honest' (i.e., do not collude), no single participant, client nor server 
administrator can learn any information about the data that stored in and manipulated 
with the VDL, except for public meta-data, and except for the computational results that 
are explicitly revealed to one or multiple clients (assuming they are authorized to obtain 
these results). 
Data-integrity is guaranteed under the assumption that the integrity of the input data is 
guaranteed, the software implementation is correct, and its deployment is not tampered  
with. 
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