
Technology Overview

Privacy Enhancing
Technologies
January, 2023

Niek J. Bouman, PhD
CTO Roseman Labs

The topic of this document is privacy-preserving computation: computing on data, possi-
bly originating from multiple data owners, in such way that neither the data owners nor the
computing infrastructure(s) involved can ‘see’ data input by others, and such that the com-
putational result is only revealed to those parties eligible to receive it. Privacy-preserving
computation can add value by enabling data-driven collaborations based on sensitive data,
and finds application in various domains, such as healthcare, financial services and public
sector.

Contents

1 Scope 2

2 Defining Security 2
2.1 Further Reading . 2

3 Trusted Execution Environments (or: Confidential Computing) 3
3.1 TEE Software Development and Constant-Time Code 3
3.2 Security . 4

4 Fully Homomorphic Encryption 4
4.1 Threshold FHE and Multi-Key FHE . 5
4.2 Implementations . 5
4.3 Programmability . 5
4.4 Performance . 6

5 SecureMulti-Party Computation 6
5.1 Garbled Circuits . 7
5.2 MPC based on Arithmetic Secret Sharing . 8

6 Side-by-Side Comparison 9
6.1 Our Rationale for Adopting MPC . 10

1

1 Scope

In this document we will distinguish between three flavours of privacy-preserving computa-
tion technologies, and for each technology we explain the basic idea, their primary use case
and discuss their pros and cons: Trusted Execution Environments (TEEs), Fully Homomor-
phic Encryption (FHE) and Secure Multi-Party Computation (MPC). In fact, there is a fourth
flavour of secure computation which is Functional Encryption (FE), which is promising but
not yet mature; for an introduction into FE we refer to Wee (2014).

Some readers might expect to also read about Federated Learning (FL), which is often
mentioned in the context of privacy-preserving data analysis. We do not discuss it here sim-
ply because Federated Learning does not guarantee data privacy by itself, since the publicly
exchanged model parameters leak information about the underlying data. Instead, federated
computation (of which FL is a special case) it is a computational paradigm, that can be made
privacy-preserving by combining it with one of the above-mentioned technologies.

2 Defining Security

Before discussing the various technologies that we mentioned above in more detail, let us
first ask the following question: What does it actually mean for privacy-preserving compu-
tation, or, a system in general, to be “secure”?

To answer this question, one should first precisely define the security properties that one
would like the computation to have; we call this a security definition. In secure computation,
it is typical to at least require correctness, meaning that the result of the computation will
be correct, and privacy, namely that no party involved in the computation learns any infor-
mation beyond the result of the computation, if that party is eligible to receive that result.
(In particular, each party should not be able to learn information on the inputs provided by
others, except information about these inputs that can be deduced from the output.) Note
that there are some other common security properties in secure computation, like fairness
or guaranteed output delivery, but we do not discuss those here.

Also, we should formally define the computation itself, by means of specifying the ideal
functionality. We can imagine the ideal functionality as an “ideal” trusted party that receives
inputs, performs the computation: for each party that is eligible to receive a result, the trusted
party evaluates a (possibly different) function on the inputs, and sends back the results to the
corresponding parties. The word “ideal” here means that the trusted party always computes
correctly and is secure “by definition.” In the real world, the parties execute a protocol, which
is essentially a recipe that specifies the sequence of computational steps and data-exchange
steps that the parties should follow in order to jointly compute the final result.

Finally, we need to specify against what type of adversary (the attacker) our computation
should be secure. The adversary is commonly imagined to be a single entity, which can
corrupt one or more parties. One typically distinguishes between a semi-honest (also called
“honest-but-curious”) adversary and amalicious (or active) adversary. In case of the former,
all parties involved in the computation (including those corrupted by the adversary) follow the
protocol, but try to learn asmuch information as possible from participating in the protocol. In
case of the latter, the corrupted parties may deviate arbitrarily from the protocol description.
We say that a protocol is passively secure if it is guaranteed to provide the security properties
in the presence of a semi-honest adversary, and likewise, we say that a protocol is actively
secure if its security properties hold in the presence of an active adversary.

2.1 Further Reading

For a more extensive treatment of defining security in secure computation, we recommend
A Pragmatic Introduction to Secure Multi-Party Computation by Evans et al., and How To
Simulate It by Yehuda Lindell.

2

https://www.di.ens.fr/~wee/pubs/scn14.pdf
https://securecomputation.org/docs/pragmaticmpc.pdf
https://eprint.iacr.org/2016/046.pdf
https://eprint.iacr.org/2016/046.pdf

3 Trusted Execution Environments (or: Confidential Computing)

A trusted execution environment is a security technology, found inside certain microproces-
sors, that lets software applications define private regions of memory to store program code
and/or data. The word ‘private’ means that those memory regions are encrypted at the pro-
cessor level, such that the application itself can make normal use of those memory regions,
while other applications and even the operating system cannot read data (and steal secrets!)
from that memory in decrypted form. An important benefit of TEEs is that the performance
of computation inside a TEE is in the same ballpark as ordinary computation on a CPU.

We can perform privacy-preserving computation using a TEE by treating the application
that runs inside the TEE as a trusted party: parties send their inputs in encrypted form to the
TEE, the TEE decrypts the data and processes it, and encrypts the result and sends it to the
designated receiver(s).

Trusted-execution environment based computing is marketed under the name of “con-
fidential computing”. Several processor vendors offer TEE technology; arguably the most
well-known is Intel’s Software Guard eXtensions (SGX), while AMD, for example, offers a
similar technology called Secure Memory Encryption (SME). The programming interfaces of
the latter two technologies are different; meaning that an application written for Intel SGX
cannot run on an AMD processor with SME, and vice versa. To mitigate this problem, there
exist abstraction layers like the Open Enclave SDK (SDK stands for software development kit)
that lets the programmer write an application that works with several underlying TEE tech-
nologies. Note that the feature sets of the major TEE technologies are not uniform, e.g., Intel
SGX additionally supports a feature called ‘attestation’ with which you can convince another
party about the presence of a genuine SGX-capable processor, and that some public key
belongs to a private key that is tied to, and only known inside an SGX-TEE. Details of such
features, however, are beyond the scope of this write up.

Certain cloud vendors offer compute nodes that specifically support TEE technology, like
Microsoft’s “Azure Confidential Computing” and Google’s “Asylo” propositions.

3.1 TEE Software Development and Constant-Time Code

Because of the advent of high-quality SDKs, TEEs are relatively easy to use. Nonetheless,
TEE-application-programmers should be careful to ensure that their code is “constant-time”,
to avoid side-channel leakage of secret information. Constant-timeness means that the
software’s branching patterns (like if-else clauses), as well as the memory-access-patterns
should be independent of secret information. (Actually, I personally prefer the term “secret-
independence” over “constant-timeness”, as it captures the requirements more accurately.)

In case you are unfamiliar with the notion of constant time, then think, for example, of
a software program that chooses among two actions based on a secret bit of information:
if the bit is 0, the program performs a simple (and quick) computation; if the bit equals 1,
the program performs a more involved and lengthier computation. Now, for some external
observer, it is easy to learn the secret bit of information, simply by measuring the time the
program takes to finish! Regarding the information leakage that can arise from memory-
access-patterns, let us think of a program that accesses elements from an arrayA in memory,
where at time k the xkth position ofA is read, where x is some list of secret numbers. Because
it is straightforward for some observer to figure out which memory location the processor is
accessing at a given time, such a program would leak x via a memory-access-pattern side
channel.

A personal observation from the author is that not every TEE-software developer is aware
of this constant-time requirement. Hence, a perhaps surprising risk of the programmer-
friendly TEE ecosystem is that non-experts can well succeed in building TEE-software that
seems to behave correctly but is insecure due to side channels, ultimately leading to a false
sense of security. In that sense, one could say that “don’t roll your own crypto” also applies

3

to TEE-programming.

3.2 Security

One problem of TEEs is that their designs as well as their implementations are typically pro-
prietary, which makes it hard to reason about the security properties of TEEs in a black-box
sense (i.e., without looking into the details of the TEE implementation). Also, TEEs lack a rich
academic theoretical-cryptography foundation (unlike FHE and MPC, which both have solid
academic foundations). Both Intel and AMD’s TEE implementations have a poor track record
with respect to security vulnerabilities; see, e.g. this paper by Randmets (2021) or simply
search the web for vulnerabilities in Intel SGX or AMD SME. While some of those vulner-
abilities can be patched via microcode updates, others can only be mitigated by physically
replacing the processor. Although one could say that using a TEEwill certainly make it (much)
harder for an adversary to gain access to an application’s secrets than without using a TEE,
but this might be too weak a guarantee, especially for high-security applications.

4 Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) is a form of public-key encryption that enables us to
perform arithmetic on encrypted values. (Recall that public-key encryption is an asymmetric
form of encryption with which anyone knowing the public key can encrypt a message, but
only the holder of the corresponding private key can decrypt the message.)

For concreteness, let’s take as example the addition of two integers a and b. We can
always first add those integers to obtain the sum s := a + b, and then encrypt s with any
public-key encryption scheme, to obtain a ciphertext cs (an encryption of s). The special
feature of an (additively) homomorphic encryption scheme is that we can essentially ex-
change the order of encrypting and performing the addition: we first individually encrypt a
and b, which gives respectively the ciphertexts ca and cb. Then, the homomorphic property of
the encryption scheme admits the operation that takes two ciphertexts as input and returns
an encryption of the sum of the underlying (unencrypted) values. Hence, when applying
this operation to the pair (ca, cb), we obtain an encryption of s. Note that this ciphertext will
practically never be identical to cs, which is in fact crucial for the security of the encryption
scheme, but nonetheless both ciphertexts will decrypt to the same plaintext value.

A fully homomorphic encryption scheme admits not only the addition but also the multi-
plication of encrypted values. This is important, because addition andmultiplication together
form a so-called universal set of operations, with which any finite function can be computed,
at least in principle.

Whilst the notion of fully homomorphic encryption exists since 1978, it took until 2009 be-
fore Craig Gentry proposed a construction (along with a mathematical security proof). Since
then, there have been many improvements; we refer the interested reader to the Wikipedia
article about homomorphic encryption.

The classical use case for FHE is computation delegation: suppose you want to dele-
gate a computation on sensitive data to some Cloud service (e.g., because you do not have
enough computational resources yourself), but you do not want the Cloud to learn your sen-
sitive input data. To achieve this using FHE, you would encrypt (before uploading it to the
Cloud) your data to yourself with a fully-homomorphic encryption scheme (in that you hold
the private key yourself). Then, the Cloud service, which cannot decrypt those ciphertexts,
runs the computation on the encrypted data (using, possibly many, homomorphic addition
and homomorphic multiplication operations) and ultimately sends back the encrypted result,
which only you can decrypt.

4

https://cyber.ee/uploads/D_2_116_An_Overview_of_Vulnerabilities_and_Mitigations_of_Intel_SGX_Applications_c1282b1505.pdf
https://www.google.com/search?q=sgx+vulnerabilities
https://www.google.com/search?q=amd+sme+vulnerabilities
https://en.wikipedia.org/wiki/Homomorphic_encryption

Table 1: Overview of software libraries for fully homomorphic encryption.

Name Author(s) Protocols Threshold FHE? Lang.
OpenFHE OpenFHE team BFV, BGV, CKKS, DM, CGGI Yes C++
SEAL Microsoft Research BFV, BGV, CKKS No C++
Lattigo TuneInsight / EPFL BFV, BGV, CKKS Yes Go
Concrete Zama CGGI variant No? Rust

Abbr. Name and description Type
BFV Brakerski/Fan-Vercauteren integer arithmetic
BGV Brakerski-Gentry-Vaikuntanathan integer arithmetic
CKKS Cheon-Kim-Kim-Song fixed-point arithmetic
DM Ducas-Micciancio Boolean circuits
CGGI Chillotti-Gama-Georgieva-Izabachene Boolean circuits

4.1 Threshold FHE andMulti-Key FHE

Two variants of FHE are suitable for multi-party settings. In Threshold FHE (Asharov et al.,
2011) there is common public key, and a secret key that is secret-shared among multiple
parties. The parties can collaboratively decrypt the ciphertext without learning anything
beyond the plaintext. Multi-Key FHE (MK-FHE) enables homomorphic operations between
ciphertexts that are encrypted under different keys. A MK-FHE ciphertext can be decrypted
collaboratively by all parties that provided input ciphertexts.

Both schemes can in principle be used to achieve constant-round MPC schemes in which
the communication complexity is only proportional to the input and output size, and indepen-
dent of the circuit size.

MPC based on threshold and multi-key FHE schemes, however, is still an active area of
research; an example of the state of the art is this article by Chowdhury et al.

4.2 Implementations

Several open-source FHE libraries exist, most notably:

• OpenFHE library, a very recent library and a combined effort by authors of several older
FHE libraries like PALISADE, HElib, HEAAN, and FHEW;

• Microsoft SEAL by Microsoft Research;
• Lattigo by EPFL and TuneInsight;
• Concrete by Zama.

In Table 1, we compare those libraries qualitatively. There, you will also find a legend for the
protocol abbreviations.

4.3 Programmability

Although developing software with FHE remains complex, certain recent innovations reduce
this complexity.

Traditionally, as an FHE-application programmer, one had to keep track of “ciphertext
noise”, which grows with the number of homomorphic operations; if this noise becomes too
large, one cannot decrypt the ciphertext anymore. While it is beyond the scope of this write
up to explain where this noise comes from, it suffices to know that in case of larger computa-
tions, one needed (or needs, depending on the FHE library) to repeatedly apply a so-called
“bootstrap” procedure (after every k homomorphic operations on the same ciphertext, for

5

https://eprint.iacr.org/2011/613
https://eprint.iacr.org/2011/613
https://eprint.iacr.org/2022/1625

some fixed k), which lowers the ciphertext noise. Bootstrapping is typically a performance
bottleneck of FHE-based computation. Also, certain operations are significantly faster in
particular FHE schemes, which creates the need for switching between FHE schemes during
a larger computation, further adding to the complexity. Newer FHE libraries (e.g., OpenFHE)
can keep track of the noise and can automatically apply bootstrapping as well as scheme-
switching.

Another development worth mentioning is the advent of FHE-transpilers. A transpiler,
sometimes called a source-to-source compiler, is a tool that translates source code written
in one programming language into equivalent source code in another programming language.
For example, Google has made an experimental FHE-transpiler that can translate a program
written in a restricted subset of C++ into an equivalent program that executes the original
program logic homomorphically on FHE-encrypted inputs. While promising, the combination
of current transpilers and FHE libraries do not yet yield production-grade results, as also
indicated by the following disclaimer from Google’s FHE C++ Transpiler:

This is currently an exploratory proof-of-concept. While it could be deployed in
practice, the run-times of the FHE-C++ operations are likely to be too long to be
practical at this time.

4.4 Performance

FHE is computationally very expensive; according to Feldmann et al. (2021) and when using
a software-based FHE implementation, FHE is “[…] four to five orders of magnitude slower
than computing on unencrypted data.” On of Microsoft SEAL’s contributors (Wei Dai) wrote
in April 2020:

Homomorphic encryption is not a generic technology: only some computations
on encrypted data are possible. It also comes with a substantial performance
overhead, so computations that are already very costly to perform on unen-
crypted data are likely to be infeasible on encrypted data. Moreover, data en-
crypted with homomorphic encryption is many times larger than unencrypted
data, so it may not make sense to encrypt, e.g., entire large databases, with
this technology. [. . .]

On the other hand, there has been enormous progress since Gentry’s FHE scheme, im-
proving the performance. Initiatives exist to accelerate homomorphic encryption using op-
timized software libraries (like Intel HEXL) or hardware accelerators, like ASICs or FPGAs.
FHE is traditionally viewed as being “compute-bound” (which means that the primary perfor-
mance bottleneck is the speed at which the system performs computations). In the presence
of hardware accelerators, FHE becomes “memory-bound” (primary performance bottleneck
is the memory bandwidth), because of the large sizes of the ciphertexts. The main problem
with relying on accelerators, however, is that those accelerators are not available in today’s
Cloud environments, posing a major deployment problem.

5 SecureMulti-Party Computation

The goal of secure multi-party computation (MPC) is for multiple parties to collaboratively
evaluate a function on multiple inputs (originating from multiple parties) such that the result
is correctly computed, the result is revealed to a designated subset of parties, and with-
out revealing any information beyond this (in particular, the parties cannot see each other’s
inputs).

We can achieve the above goal by means of implementing (typically, in software) an MPC
protocol. When comparing different flavours of MPC protocols, it helps to distinguish be-
tween two-party computation and multiparty computation involving more than two parties.

6

https://arxiv.org/abs/2109.05371

Three main flavours of MPC exist: MPC based on garbled circuits (GC), MPC based on arith-
metic secret sharing and MPC based on a threshold ormulti-key homomorphic encryption
scheme.

5.1 Garbled Circuits

Garbled circuits, introduced by Yao (1986), allow two parties to evaluate Boolean circuits in
MPC (although there exist both multi-party as well as arithmetic-circuit extensions for GC,
we do not discuss such extensions here). In GC-based MPC, the two parties respectively
assume the role of the garbler and the evaluator.

The garbler first prepares a so-called garbled circuit, which is a Boolean circuit that is
“encrypted” in the following sense. First, each wire (carrying a binary value) is labeled with
two randomly generated keys (the wire-value keys) corresponding to, respectively, a zero
and a one. Then, the output column of each row of the truth table of each Boolean gate is
encrypted with a symmetric encryption scheme, such that the wire-value key of the gate’s
output is encrypted under the concatenation of the corresponding input wire-value keys.

Then, the garbler sends the garbled circuit to the evaluator. The evaluator starts with
the right wire-value-keys corresponding to the leaves of the circuit, and to her private input.
(Note that the evaluator obtains these initial keys from the garbler without revealing her input
via a cryptographic primitive known as oblivious transfer.) The evaluator can decrypt gates
one-by-one, every time obtaining new keys with which she can decrypt the next gate(s), up
until thewire-value key corresponding to the result of the function. Finally, depending onwho
may learn the result, either the garbler sends the mapping between those final wire-value
keys and the corresponding bits to the evaluator, or the evaluator sends the final wire-value
key to the garbler.

Garbled circuits in the above sense provide passive security; the standard trick to turn
this into an actively secure two-party MPC protocol is by applying the “cut-and-choose”
technique: the garbler sends many independent copies to the evaluator, who opens a ran-
dom subset of these circuits to check that the garbler is not cheating by preparing incorrect
circuits.

An advantage of GC is that interaction between the parties only takes place at the be-
ginning and the end of the computation; no interaction is needed during the computation.
Potential disadvantages are, with respect to computations involving integer arithmetic, the
corresponding Boolean circuit (hence, the garbled circuit) might become rather large, and
note that this garbled circuit must be communicated to the evaluator.

Another fact is that GC relies on oblivious transfer, meaning that there is some underlying
cryptographic assumption. Performance-wise, OT is not a bottleneck anymore because of
mature OT-extension techniques (the line of research initiated by Ishai, et al. (2003).

5.1.1 Implementation Aspects

Using garbled circuits requires a circuit compiler that compiles a function into a Boolean cir-
cuit. Tools for this purpose include EMP-toolkit and CBMC-GC. In early GC implementations,
the entire circuit needed to fit in memory, which was a bottleneck. In modern implemen-
tations, however, the garbled circuit is generated on-the-fly and is sent as a stream to the
evaluator.

Existing GC libraries include CRGC, EMP SH2PC and TinyGarble2.

5.1.2 Further Reading

For a good overview of the state of the art of garbled-circuits MPC, we recommend a A
Pragmatic Introduction to Secure Multi-Party Computation by Evans et al.

7

https://ieeexplore.ieee.org/document/4568207
https://www.iacr.org/archive/crypto2003/27290145/27290145.pdf
https://github.com/emp-toolkit
https://gitlab.com/securityengineering/CBMC-GC-2/-/tree/master
https://github.com/chart21/CRGC
https://github.com/emp-toolkit/emp-sh2pc
https://github.com/IntelLabs/TinyGarble2.0
https://securecomputation.org/docs/pragmaticmpc.pdf
https://securecomputation.org/docs/pragmaticmpc.pdf

5.2 MPC based on Arithmetic Secret Sharing

A (t, n) threshold secret sharing scheme lets us convert a secret value s (from some finite
ring or finite field) into a list of n shares with the following property: any collection of up to t
shares reveals no information about the secret s, while any t+1 shares determine the secret.
Now suppose that we distribute the shares over n parties by giving each party one share.
Effectively, we have shared the secret s over these n parties: t+ 1 parties could gather and
use the reconstruction functionality of the secret sharing scheme to reconstruct the secret.

By taking a linear secret sharing scheme, n parties could perform addition of two secret-
shared values non-interactively, by locally adding the corresponding shares. Using a slightly
more complicated protocol that depends on the secret-sharing method, and which also
involves interaction between the parties, they can perform a multiplication of two secret-
shared values. The ability to perform addition and multiplication on secret shares enables
the parties to securely evaluate any function represented in the form of an arithmetic circuit.

Well-known examples of MPC protocols are the (passively secure) BGW protocol (Ben-Or
et al., 1988) using Shamir secret sharing, and the (covertly or actively secure) SPDZ protocol
(Smart et al., 2012).

5.2.1 Implementation Techniques

Most of the existing arithmetic-secret-sharing-based MPC frameworks use one of the fol-
lowing two implementation styles.

The first style exposes the MPC framework as a library; the programmer writes the pro-
gram in a some existing host language (e.g., C or Python), and calls library functions. Using
those library functions, the programmer dynamically instantiates the arithmetic circuit, cor-
responding to the MPC protocol, in the form of a task graph. The VIFF framework (and its
descendants) are an example of this style.

The other style uses a domain-specific-language (DSL), i.e., a programming language for
directly specifying multi-party computations. This DSL-code is then translated into byte-
code (via a DSL-to-bytecode compiler), and executed by a virtual machine. The Bristol-
SPDZ framework is an example of this style of implementation. A potential issue of the DSL-
implementation-style is that writing a robust DSL compiler is a huge engineering effort in
itself. Indeed, in many DSL-based MPC frameworks, the tailor-made compiler is rather im-
mature and typically becomes a bottleneck when implementing protocols that have complex
structure, or protocols that operate on large amounts of data.

5.2.2 The Outsourcing Scenario

In practical deployments of MPC, there may be parties who merely provide input and/or con-
sume output, but do not participate in the actual computation (e.g., because they cannot run
a server) This setting is known in the MPC literature as the outsourcing scenario, because
the computation is outsourced to the compute parties, i.e. those parties that participate in
the multiparty computation. We briefly mention this setting here, because it is a practical
approach to consume input from (and/or deliver output to) many parties while keeping the
number of protocol parties low, which is a benefit for efficiency and performance.

5.2.3 Performance

MPC incurs a significant performance overhead when compared to ordinary computation;
this overhead mainly stems from the need for interaction between the parties during the
computation. Hence, the performance is strongly influenced by the latency and throughput
of the network. On the other hand, the computational overhead is (much) lower than fully
homomorphic encryption.

The overhead depends on theMPCprotocol that is used, and strongly depends onwhether
the protocol offers passive or active security, and whether the protocol offers its security

8

https://inst.eecs.berkeley.edu/~cs276/fa20/notes/BGW88.pdf
https://inst.eecs.berkeley.edu/~cs276/fa20/notes/BGW88.pdf
https://eprint.iacr.org/2012/642.pdf
https://github.com/mgeisler/viff
https://github.com/bristolcrypto/SPDZ-2
https://github.com/bristolcrypto/SPDZ-2

Table 2: A logistic regression benchmark from Keller (2020) showing relative performance
differences (in terms of computation time and communication size) along three axes: three-
party honest-majority vs. two-party dishonest-majority MPC, passive vs. active security, and
64-bit vs. 128-bit arithmetic.

logreg, 64-bit passive active
3PC honest majority time, comm ×9, ×4
2PC full threshold ×42, ×132 ×1600, ×1800

logreg, 128-bit passive active
3PC honest majority time, comm ×2.5, ×2.3
2PC full threshold ×30, ×10 ×530, ×921

guarantees in the presence of an honest majority of parties, or also in case the majority of
parties is dishonest.

Keller gives an extensive performance comparison between different MPC protocols. In
particular, the paper presents a logistic regression benchmark that gives a ballpark estimate
for the relative performance differences between three-party honest-majority MPC (passive
as well as active security) and two-party dishonest-majority (full threshold) MPC (passive
and active). Table 2 shows these relative differences, in terms of computation time and
communication size.

5.2.4 Further Reading

We refer the reader to “An Introduction to Secret-Sharing-Based Secure Multiparty Compu-
tation” by Escudero, and to Secure Multiparty Computation and Secret Sharing by Cramer et
al.

6 Side-by-Side Comparison

In Table 3, we show a qualitative comparison between trusted-execution environments, fully
homomorphic encryption, and (arithmetic-secret-sharing-based) secure multiparty compu-
tation. We compare along several categories, we describe each of them below.

Security General remarks with respect to security foundations and/or known problems;

Security roadmap Most practical PET solutions currently offer passive security; how realistic
is a transition to active security?

Performance Rough and relative (qualitative) indication of the overall runtime performance;

Computational complexity Howmuch computational overhead does the technology induce,
when compared to ordinary (cleartext) computation?

Communication complexity Relative comparison in terms of the amount of data that needs
to be communicated between parties; and, does the method require interaction during
computation, or only at the beginning and the end?

Flexibility with respect to complex circuits Howdoes the technology copewith complex (deep)
circuits?

Flexibility with respect to deployment Can the technology be deployed on any hardware,
or is dedicated hardware like accelerators required for its operation?

9

https://eprint.iacr.org/2020/521
https://eprint.iacr.org/2022/062.pdf
https://eprint.iacr.org/2022/062.pdf
https://www.cambridge.org/core/books/secure-multiparty-computation-and-secret-sharing/4C2480B202905CE5370B2609F0C2A67A

Table 3: Comparison between different privacy enhancing technologies.

Security Security
roadmap

Perf
(overall)

Computational
complexity

Communication
complexity

Flexibility
wrt complex
circuits

Flexibility wrt
deployment

Verdict/
conclusion

TEE Poor track record
in terms
of vulnerabilities

n/a high Near native Like ordinary
computation

Like ordinary
computation

Requires TEE-
enabled cloud

Fast, but suffers from
serious security
weaknesses

FHE Well-studied,
solid academic
foundation

Active
security
via ZKP
extremely
slow

low Heavy, due to large
key and cipher-
text sizes, high-
degr. polynomial
arith. and NTTs

Huge keys Bootstrapping
/ noise-growth

Requires
dedicated
hardware; not yet
available in
datacenter

Currently not suited
for enterprise
workloads

MPC
(based on
LSSS)

Well-studied,
solid academic
foundation

Realistic
route to
active
security

med Finite-field
arithmetic in
moderately sized
prime fields

Communication
during
computation

Scales to large
circuits

Works with
standard infra

Currently offers best
trade-off between
security, performance
& flexibility

6.1 Our Rationale for AdoptingMPC

Roseman Labs uses secure multiparty computation as its main privacy technology, because
we are convinced that MPC currently has the best overall “scorecard,” when taking security,
runtime performance, and versatility into account.

In some more detail, and in addition to the above comparison, the MPC scheme that we
currently use (BGW) enjoys information-theoretic security (hence, we do not rely on less
well-studied computational intractability assumptions; but note that we do rely on standard
public-key cryptography for establishing secure channels). Furthermore, the secret-sharing
technique (Shamir) does not have significant ciphertext expansion: secret sharing one field
element (the value) gives rise to one field element (a share) per party. Protocols for basic
arithmetic are straightforward to implement and can be made highly efficient.

10

	Scope
	Defining Security
	Further Reading

	Trusted Execution Environments (or: Confidential Computing)
	TEE Software Development and Constant-Time Code
	Security

	Fully Homomorphic Encryption
	Threshold FHE and Multi-Key FHE
	Implementations
	Programmability
	Performance

	Secure Multi-Party Computation
	Garbled Circuits
	MPC based on Arithmetic Secret Sharing

	Side-by-Side Comparison
	Our Rationale for Adopting MPC

